@article {271, title = {A physical sciences network characterization of non-tumorigenic and metastatic cells.}, journal = {Sci Rep}, volume = {3}, year = {2013}, month = {2013}, pages = {1449}, abstract = {

To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells\&$\#$39; regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.

}, keywords = {Cell Line, Tumor, Cell Movement, Cell Size, Cell Survival, Computer Simulation, Gene Expression Regulation, Neoplastic, Humans, Models, Biological, Neoplasm Metastasis, Neoplasm Proteins, Tumor Markers, Biological}, issn = {2045-2322}, doi = {10.1038/srep01449}, author = {Agus, David B and Alexander, Jenolyn F and Arap, Wadih and Ashili, Shashanka and Aslan, Joseph E and Austin, Robert H and Backman, Vadim and Bethel, Kelly J and Bonneau, Richard and Chen, Wei-Chiang and Chen-Tanyolac, Chira and Choi, Nathan C and Curley, Steven A and Dallas, Matthew and Damania, Dhwanil and Davies, Paul C W and Decuzzi, Paolo and Dickinson, Laura and Estevez-Salmeron, Luis and Estrella, Veronica and Ferrari, Mauro and Fischbach, Claudia and Foo, Jasmine and Fraley, Stephanie I and Frantz, Christian and Fuhrmann, Alexander and Gascard, Philippe and Gatenby, Robert A and Geng, Yue and Gerecht, Sharon and Gillies, Robert J and Godin, Biana and Grady, William M and Greenfield, Alex and Hemphill, Courtney and Hempstead, Barbara L and Hielscher, Abigail and Hillis, W Daniel and Holland, Eric C and Ibrahim-Hashim, Arig and Jacks, Tyler and Johnson, Roger H and Joo, Ahyoung and Katz, Jonathan E and Kelbauskas, Laimonas and Kesselman, Carl and King, Michael R and Konstantopoulos, Konstantinos and Kraning-Rush, Casey M and Kuhn, Peter and Kung, Kevin and Kwee, Brian and Lakins, Johnathon N and Lambert, Guillaume and Liao, David and Licht, Jonathan D and Liphardt, Jan T and Liu, Liyu and Lloyd, Mark C and Lyubimova, Anna and Mallick, Parag and Marko, John and McCarty, Owen J T and Meldrum, Deirdre R and Michor, Franziska and Mumenthaler, Shannon M and Nandakumar, Vivek and O{\textquoteright}Halloran, Thomas V and Oh, Steve and Pasqualini, Renata and Paszek, Matthew J and Philips, Kevin G and Poultney, Christopher S and Rana, Kuldeepsinh and Reinhart-King, Cynthia A and Ros, Robert and Semenza, Gregg L and Senechal, Patti and Shuler, Michael L and Srinivasan, Srimeenakshi and Staunton, Jack R and Stypula, Yolanda and Subramanian, Hariharan and Tlsty, Thea D and Tormoen, Garth W and Tseng, Yiider and van Oudenaarden, Alexander and Verbridge, Scott S and Wan, Jenny C and Weaver, Valerie M and Widom, Jonathan and Will, Christine and Wirtz, Denis and Wojtkowiak, Jonathan and Wu, Pei-Hsun} } @article {286, title = {Morphogenesis: Laying down the tracks.}, journal = {Nat Mater}, volume = {11}, year = {2012}, month = {2012 Jun}, pages = {490-2}, keywords = {Cell Movement, Collagen, Epithelium, Extracellular Matrix, Feedback, Morphogenesis}, issn = {1476-1122}, doi = {10.1038/nmat3345}, author = {Cassereau, Luke and DuFort, Christopher C and Weaver, Valerie M} } @article {341, title = {Dynamic interplay between the collagen scaffold and tumor evolution.}, journal = {Curr Opin Cell Biol}, volume = {22}, year = {2010}, month = {2010 Oct}, pages = {697-706}, abstract = {

The extracellular matrix (ECM) is a key regulator of cell and tissue function. Traditionally, the ECM has been thought of primarily as a physical scaffold that binds cells and tissues together. However, the ECM also elicits biochemical and biophysical signaling. Controlled proteolysis and remodeling of the ECM network regulate tissue tension, generate pathways for migration, and release ECM protein fragments to direct normal developmental processes such as branching morphogenesis. Collagens are major components of the ECM of which basement membrane type IV and interstitial matrix type I are the most prevalent. Here we discuss how abnormal expression, proteolysis and structure of these collagens influence cellular functions to elicit multiple effects on tumors, including proliferation, initiation, invasion, metastasis, and therapy response.

}, keywords = {Cell Movement, Collagen, Humans, Neoplasms, Tissue Scaffolds}, issn = {1879-0410}, doi = {10.1016/j.ceb.2010.08.015}, author = {Egeblad, Mikala and Rasch, Morten G and Weaver, Valerie M} } @article {346, title = {Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: implications for atherosclerosis.}, journal = {J Cell Physiol}, volume = {225}, year = {2010}, month = {2010 Oct}, pages = {115-22}, abstract = {

Vascular disease, such as atherosclerosis, is accompanied by changes in the mechanical properties of the vessel wall. Although altered mechanics is thought to contribute to disease progression, the molecular mechanisms whereby vessel wall stiffening could promote vascular occlusive disease remain unclear. It is well known that platelet-derived growth factor (PDGF) is a major stimulus for the abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) and contributes critically to vascular disease. Here we used engineered substrates with tunable mechanical properties to explore the effect of tissue stiffness on PDGF signaling in VSMCs as a potential mechanism whereby vessel wall stiffening could promote vascular disease. We found that substrate stiffness significantly enhanced PDGFR activity and VSMC proliferation. After ligand binding, PDGFR followed distinct routes of activation in cells cultured on stiff versus soft substrates, as demonstrated by differences in its intensity and duration of activation, sensitivity to cholesterol extracting agent, and plasma membrane localization. Our results suggest that stiffening of the vessel wall could actively promote pathogenesis of vascular disease by enhancing PDGFR signaling to drive VSMC growth and survival.

}, keywords = {Acrylic Resins, Animals, Atherosclerosis, Cattle, Cell Culture Techniques, Cell Movement, Cell Proliferation, Cells, Cultured, Elasticity, Muscle, Smooth, Vascular, Myocytes, Smooth Muscle, Platelet-Derived Growth Factor, Receptors, Platelet-Derived Growth Factor}, issn = {1097-4652}, doi = {10.1002/jcp.22202}, author = {Brown, Xin Q and Bartolak-Suki, Erzsebet and Williams, Corin and Walker, Mathew L and Weaver, Valerie M and Wong, Joyce Y} } @article {396, title = {Biomechanical regulation of cell orientation and fate.}, journal = {Oncogene}, volume = {27}, year = {2008}, month = {2008 Nov 24}, pages = {6981-93}, abstract = {

Biomechanical regulation of tumor phenotypes have been noted for several decades, yet the function of mechanics in the co-evolution of the tumor epithelium and altered cancer extracellular matrix has not been appreciated until fairly recently. In this review, we examine the dynamic interaction between the developing epithelia and the extracellular matrix, and discuss how similar interactions are exploited by the genetically modified epithelium during tumor progression. We emphasize the process of mechanoreciprocity, which is a phenomenon observed during epithelial transformation, in which tension generated within the extracellular microenvironment induce and cooperate with opposing reactive forces within transformed epithelium to drive tumor progression and metastasis. We highlight the importance of matrix remodeling, and present a new, emerging paradigm that underscores the importance of tissue morphology as a key regulator of epithelial cell invasion and metastasis.

}, keywords = {Animals, Biochemical Processes, Bioreactors, Cell Culture Techniques, Cell Differentiation, Cell Movement, Cell Polarity, Cell Transformation, Neoplastic, Embryonic Development, Epithelial Cells, Humans, Mechanotransduction, Cellular, Models, Biological, Neoplasm Metastasis}, issn = {1476-5594}, doi = {10.1038/onc.2008.348}, author = {Lopez, J I and Mouw, J K and Weaver, V M} }