@article {341, title = {Dynamic interplay between the collagen scaffold and tumor evolution.}, journal = {Curr Opin Cell Biol}, volume = {22}, year = {2010}, month = {2010 Oct}, pages = {697-706}, abstract = {

The extracellular matrix (ECM) is a key regulator of cell and tissue function. Traditionally, the ECM has been thought of primarily as a physical scaffold that binds cells and tissues together. However, the ECM also elicits biochemical and biophysical signaling. Controlled proteolysis and remodeling of the ECM network regulate tissue tension, generate pathways for migration, and release ECM protein fragments to direct normal developmental processes such as branching morphogenesis. Collagens are major components of the ECM of which basement membrane type IV and interstitial matrix type I are the most prevalent. Here we discuss how abnormal expression, proteolysis and structure of these collagens influence cellular functions to elicit multiple effects on tumors, including proliferation, initiation, invasion, metastasis, and therapy response.

}, keywords = {Cell Movement, Collagen, Humans, Neoplasms, Tissue Scaffolds}, issn = {1879-0410}, doi = {10.1016/j.ceb.2010.08.015}, author = {Egeblad, Mikala and Rasch, Morten G and Weaver, Valerie M} } @article {366, title = {Matrix crosslinking forces tumor progression by enhancing integrin signaling.}, journal = {Cell}, volume = {139}, year = {2009}, month = {2009 Nov 25}, pages = {891-906}, abstract = {

Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The importance of ECM remodeling to cancer is appreciated; the relevance of stiffening is less clear. We found that breast tumorigenesis is accompanied by collagen crosslinking, ECM stiffening, and increased focal adhesions. Induction of collagen crosslinking stiffened the ECM, promoted focal adhesions, enhanced PI3 kinase (PI3K) activity, and induced the invasion of an oncogene-initiated epithelium. Inhibition of integrin signaling repressed the invasion of a premalignant epithelium into a stiffened, crosslinked ECM and forced integrin clustering promoted focal adhesions, enhanced PI3K signaling, and induced the invasion of a premalignant epithelium. Consistently, reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence. These data show how collagen crosslinking can modulate tissue fibrosis and stiffness to force focal adhesions, growth factor signaling and breast malignancy.

}, keywords = {Aging, Animals, Breast Neoplasms, Collagen, Epidermal Growth Factor, Extracellular Matrix, Female, Fibrosis, Genes, ras, Humans, Integrins, Mammary Glands, Human, Mice, Mice, Inbred BALB C, Protein-Lysine 6-Oxidase, Signal Transduction}, issn = {1097-4172}, doi = {10.1016/j.cell.2009.10.027}, author = {Levental, Kandice R and Yu, Hongmei and Kass, Laura and Lakins, Johnathon N and Egeblad, Mikala and Erler, Janine T and Fong, Sheri F T and Csiszar, Katalin and Giaccia, Amato and Weninger, Wolfgang and Yamauchi, Mitsuo and Gasser, David L and Weaver, Valerie M} }